
. .

California State University
Northridge

Department of Computer Science

THESIWPROJECT PROPOSAL

TITL.E: Automated Software Test Tool

Eugean Hacopians

File No: 932-1022

Date: June, 96

Approved: ________ –__––___

Committee Chair: Dr.Shan Barkataki

1 OBJECTIVE

The objective of the Graduate project clescribccl below is t o
introduce the development of a software tool which will be used to
automate the testing process of a JPI,-specific set of software
programs.

2 INTRODUCTIO~

The Multi-mission Ground System Office (MGSO), which is part
of the Jet Propulsion Labora tory (JPL) organization, produces a
multiple set of core software programs to assist in the generation of
flight sequences that are uplinked to spacecraft through the Deep
Space Network (DSN). MGSO develops these software programs b y
collecting all the common requirements from different JPL/NASA
projects. Upon delivery of the MGSO core software, each project
modifies the program and tailors it to their specific needs and
requirements by manipulating the necessary files.

These programs are inter- linkecl together. For instance, the
output of one software program is an input to another, in addition to
passing initialization files such as the command database and flight
rules. A Sequence Integration E n g i n e e r (SIE) may generate the
initial input file by using one of these software tools.

One can look at these programs as an “operating system” of t h e
spacecraft, but with some differences. Consider the following: when
a UNIX command directive such as “1s” is entered at the command
line, the result is a list of the current working directory. However,
the steps involved in executing this command directive occur within
the operating system and are transparent to the user. The “1s”
command, after some translations, is converted into binary, loaded
into CPU memory, and then executed. A similar process occurs on
the spacecraft which carries the computer system (spacecraft brain)
onboard. Due to size and weight limitations, there is a limited
s torage (hard clisk) on board the spacecraft computer s ystcm.
Therefore, only a port ion of the operating system is instal led
onboard, while the remaining portion remains in the ground system.
In other words, the comrnancl translat ions and binary conversions

remain in the ground system, and then command bits are up]inkecl to
the spacecraft for command processing ant] execution.

These progralns are large in size and complexity. Many files
could be manipulated cluring the process of adaptation ancl,
therefore, each software program must be tested at the unit level.
Also, other initialization files are creatccl cluring the adaptation phase
either manually, by software or combination of both. These files
must also be tested for completeness and correctness.

The process of testing these files is painstaking work. Due to
the amount of data contained in each file, it is very difficult to test all
possibilities. To simplify this process, a software utility tool,
Automated Software Test Tool (ASTT), will be clcvclopcd to test these
programs and files in a more efficient method.

3 TECHNICAI. APPROACH

The Automated Software Test Tool (ASTT) which will b c
developed using Object-Oricntccl I)csign (001>) and implemented i n
Object-Oriented Programming (001’), is dividccl into two major parts.
The first part will r e a d a commancl clatabase file containing a
description of all valicl spacecraft commands and create test case
scenario files. The scconcl part will run each test case scenario file
through the software chain to verify the validity and correctness of
every program and initialization file. If at any time, a program in
the chain fails to produce a correct output file or fails altogether, the
program will be terminated and the cha in wi l l be concludecl. A
report will be generated to indicate the success or failure of each test
case.

The ASTT will procluce approximately 1600 test cases, one per
command. Each f i l e wi l l conta in one command wi th a l l the
permutation of parameter values. l;or instance, if a commancl h a s
three parameters with the first parameter having four possible
values, the second parameter having three possible values, and the
third parameter having two possible values, then the test file would
contain 4X3X2 = 24 instances of that one commancl. Command
parameters range from zero to thir ty, with an average of four

parameters per command. Each parameter has about two to twenty
values, with an average of five values per parameter. To process a
test of this magnitude, it woLIlcl take approximately seven days of
non-stop processing cm a 100 Million of Instruction Per Second
(MII’S) Hewlett Packard 735 workstation. To shor ten the tes t
duration, ASTT will have the capability to direct test execution tasks
to multiple workstations based on users request. ASTT will have the
ability to access 3 Hewlett Packard 735 workstations and 15 Hewlett
Packard 725 workstations (that run at 50 MIPS). The user will
interact with the ASTT via a Graphical User Interface (GIJI).

This project will be accomplished in three incremental phases.
The software for generating the test case scenario files will b e
developed in the first phase, along with the command database
interface, and processing of each commancl. The second phase will
include developing the supporting scripts which will be used to ru n
the test files through the software chain for verif ication and
validation. Also the preliminary part of the GUI will be developed i n
the second phase. Enhancing the capabilities of ASTT will be done i n
the third phase, such as distributing the processes over mul t ip le
workstations, enhancing the supporting scripts and GUI to support
the process distribution. Each delivery phase will include a specified
period of time allocated for testing the delivered products and their
capabilities.

Work breakdown structure is as follows:

. Phase One
1. Develop command database interface.
2. Process commands.
3. Create “test case scenario” files (which is the initial input

file).
4. Verify and validate phase one capabilities.

. Phase Two
1. Develop scripts in order to run the test files through t h e

software chain and detect any failure.
2. Develop the preliminary part of the GUI.
3. Verify and validate phase two capabilities.

● P h a s e T h r e e
1. Distribute the processes over multiple workstations.
2 . E n h a n c e t h e s u p p o r t i n g s c r i p t s and GUI to support the

process distribution.
3. Verify and validate phase three capabilities.

4 sCHEDUL~

The elapsed t ime for this project will be June 1996 throllgh
February 1997. The chart below depicts the milestones.

H—t——H——t—t+—+
Jun Jul Aug Sep Ott Nov I)cc Jan Feb Mar
1996 1997

Note: The phase and steps are defined in Section 3 of this document.

5 CRITERIA FOR SUCCESS

The minimum success criteria for validating and evaluating the ASTT
are as follows:

1. Generation of test case scenario files using the command
database interface.

2. Development of a major script file used to run a test case
through the chain of software programs on one workstation.

3. Distinguishing between successful or unsuccessful “failed”
test cases.

4. Availability of a user-frienclly GUI that utilizes and monitors
the success criteria 1, 2, and 3.

The desired success criteria for validating and evaluating the ASTT
are as follows:

5. Distribution of processes onto multiple workstations.

6. Successful production and implementation of the ASTT to
support users with effective and automated testing
capabilities.

[1] J. Rumbaugh, M. Blaha, W. Prcmerlani, F. Eddy, W. Lorensen.
“Object-Oriented Modeling and Design.” Prentice-Hall, New Jersey,
1991

[2] D. Norman. “The Design of Everyday Things.” Doubleday, New
York, 1989.

[3] B . Shneiderman. “Designing the User Interface.” Addison-
Wesley, New York, 1992. Second IZddition.

[4] R. Pressman. “Software Engineering: A Practitioner’s Approach. ”
McGraw-Hill, New York, 1992. Third Edition.

